新能源并網(wǎng)逆變器控制策略研究綜述與展望
張興,李明*,郭梓暄,王繼磊,韓峰,付新鑫
(可再生能源接入電網(wǎng)技術(shù)國家地方聯(lián)合工程實(shí)驗(yàn)室(合肥工業(yè)大學(xué))安徽省 合肥市 230009)
摘要
隨著風(fēng)電和光伏等新能源發(fā)電系統(tǒng)滲透率的不斷提高,電網(wǎng)呈現(xiàn)出弱電網(wǎng)甚至極弱電網(wǎng)特性,給新能源并網(wǎng)發(fā)電系統(tǒng)穩(wěn)定和高效運(yùn)行帶來了嚴(yán)峻挑戰(zhàn)。通過回顧現(xiàn)有典型的新能源并網(wǎng)逆變穩(wěn)定控制策略等方面的成果,總結(jié)了電流源模式、電壓源模式以及雙模式控制的基本原理和研究現(xiàn)狀,并指出基于鎖相環(huán)控制的電流源模式并網(wǎng)雖然能夠保證強(qiáng)電網(wǎng)下的系統(tǒng)穩(wěn)定性和功率控制快速性等,但是此類控制方式在穩(wěn)定性、系統(tǒng)電壓和頻率調(diào)整等方面有諸多局限,難以適應(yīng)新能源發(fā)電單元高比例接入的場景。基于功率自同步控制的電壓源模式控制能夠?yàn)殡妷汉皖l率提供支撐,更加適用于高滲透率新能源發(fā)電并網(wǎng)的弱電網(wǎng)場合;基于電網(wǎng)阻抗自適應(yīng)的雙模式控制策略則同時(shí)結(jié)合了電流源模式和電壓源模式在穩(wěn)定性上的優(yōu)勢,更加適用于高滲透率下電網(wǎng)阻抗大幅波動的場合。最后,對上述幾種典型控制策略進(jìn)行總結(jié),并探討了未來的研究方向。
關(guān)鍵詞 : 高滲透率;新能源并網(wǎng);電流源模式;電壓源模式;雙模式
基金項(xiàng)目:國家自然科學(xué)基金重點(diǎn)項(xiàng)目(51937003);國家自然科學(xué)基金委員會-國家電網(wǎng)公司智能電網(wǎng)聯(lián)合基金資助項(xiàng)目(U1766207)。 Key Program of National Natural Science Foundation of China(51937003); National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid (U1766207).
0 引言
為了解決傳統(tǒng)化石能源帶來的環(huán)境污染問題,光伏、風(fēng)電等新能源發(fā)電技術(shù)得到了持續(xù)關(guān)注和應(yīng)用。目前,中國是世界上發(fā)展新能源發(fā)電最快且裝機(jī)規(guī)模最大的國家,2020年中國風(fēng)電和光伏新增裝機(jī)容量分別為71.67 GW和48.2 GW。在第75屆聯(lián)合國大會期間,國家主席習(xí)近平提出中國力爭于2030年前實(shí)現(xiàn)二氧化碳排放達(dá)到峰值,并在2060年前努力爭取實(shí)現(xiàn)“碳中和”的目標(biāo)。為實(shí)現(xiàn)這一目標(biāo),大力發(fā)展新能源發(fā)電已成為中國重大戰(zhàn)略需求。
高滲透率新能源發(fā)電已成為必然趨勢。目前,中國蒙東、甘肅等地區(qū)的新能源裝機(jī)比例已經(jīng)超過了丹麥、葡萄牙等發(fā)達(dá)國家。然而,高滲透率也導(dǎo)致棄風(fēng)、棄光和電網(wǎng)故障頻發(fā)等一系列問題,對電網(wǎng)和新能源發(fā)電系統(tǒng)的安全穩(wěn)定運(yùn)行帶來了諸多挑戰(zhàn)。例如,2012年12月,河北沽源風(fēng)電場并網(wǎng)點(diǎn)附近有高補(bǔ)償度串補(bǔ)輸電線路,引發(fā)次同步振蕩,由于電流過大,導(dǎo)致部分風(fēng)機(jī)脫網(wǎng);2015年7月,新疆哈密的三塘湖電網(wǎng)風(fēng)電場多次出現(xiàn)振蕩現(xiàn)象;2015年9月,華東地區(qū)錦蘇特高壓直流系統(tǒng)發(fā)生雙極閉鎖事故,導(dǎo)致送端電網(wǎng)過電壓故障,又由于電力系統(tǒng)慣量不足,導(dǎo)致0.41 Hz的嚴(yán)重頻率跌落。實(shí)際上,以上事故的發(fā)生均與新能源并網(wǎng)的高滲透率緊密相關(guān)。高滲透率新能源發(fā)電往往具有間歇性、隨機(jī)性和出力波動性,并網(wǎng)點(diǎn)的等效電網(wǎng)阻抗往往出現(xiàn)大幅波動的問題,使電網(wǎng)呈現(xiàn)出弱電網(wǎng)甚至極弱電網(wǎng)特性,給新能源并網(wǎng)發(fā)電系統(tǒng)穩(wěn)定和高效運(yùn)行帶來了嚴(yán)峻挑戰(zhàn)。為此,作為新能源發(fā)電的核心裝備,并網(wǎng)逆變器在電網(wǎng)阻抗大幅波動時(shí)的穩(wěn)定性問題得到了大量專家學(xué)者的關(guān)注和研究。
可見,為了實(shí)現(xiàn)穩(wěn)定的新能源并網(wǎng)系統(tǒng),應(yīng)充分解決并網(wǎng)逆變器的控制設(shè)計(jì)問題。目前,并網(wǎng)逆變器主要有兩種基本控制模式:電流控制型和電壓控制型,或者稱為電流源模式和電壓源模式[1-3]。目前并網(wǎng)逆變器多采用電流源模式。大量文獻(xiàn)對電流源模式下的新能源發(fā)電單元穩(wěn)定性控制策略進(jìn)行了分析,如虛擬阻抗控制、調(diào)整前饋電壓控制和調(diào)整鎖相環(huán)帶寬控制等。但是此類電流源模式控制方式在系統(tǒng)電壓和頻率調(diào)整等方面有諸多局限,難以適應(yīng)新能源發(fā)電并網(wǎng)逆變器高比例接入的場景。因此,有文獻(xiàn)提出了新能源發(fā)電并網(wǎng)逆變器的電壓源模式控制,它以電壓為控制目標(biāo),使并網(wǎng)逆變器的外特性表現(xiàn)為受控電壓源,能夠?yàn)殡妷汉皖l率提供支撐,更適用于高滲透率新能源發(fā)電并網(wǎng)場合。
綜上所述,本文將對高滲透率新能源并網(wǎng)逆變器的現(xiàn)有控制問題進(jìn)行歸納與分析,分別介紹電流源和電壓源兩種典型的并網(wǎng)逆變控制模式,以及由此發(fā)展得到的雙模式控制策略。
1 高滲透率新能源并網(wǎng)發(fā)電系統(tǒng)的典型結(jié)構(gòu)
典型的高滲透率新能源并網(wǎng)發(fā)電系統(tǒng)如圖1所示。新能源通過并網(wǎng)逆變器接入新能源發(fā)電單元接入點(diǎn)(point of generating unit connection,PGUC),多個(gè)新能源發(fā)電單元通過電站變壓器匯集到電站接入點(diǎn)(point of connection,POC),然后多個(gè)新能源發(fā)電站再通過輸電線路匯集到公共耦合點(diǎn)(point of common coupling,PCC)。從圖中可以看出,不論是太陽能或風(fēng)能,都必須經(jīng)過并網(wǎng)逆變器才能實(shí)現(xiàn)并網(wǎng)發(fā)電??梢?,并網(wǎng)逆變器是新能源發(fā)電必不可少的關(guān)鍵環(huán)節(jié),承擔(dān)著能量高效轉(zhuǎn)換的關(guān)鍵任務(wù)。并網(wǎng)逆變器與電網(wǎng)的聯(lián)接與交互是影響新能源并網(wǎng)發(fā)電系統(tǒng)穩(wěn)定、高效運(yùn)行的關(guān)鍵因素。
通過圖1可知,隨著分布式發(fā)電系統(tǒng)的不斷推廣和發(fā)展,高滲透率新能源并網(wǎng)發(fā)電系統(tǒng)多采用長距離輸電線路和多臺變壓器將系統(tǒng)互連并接入公共電網(wǎng),此時(shí)高滲透率新能源并網(wǎng)發(fā)電系統(tǒng)表現(xiàn)出含有不可忽略電網(wǎng)阻抗的低短路比(short circuit ratio,SCR)特征[4-7]。根據(jù)IEEE Standard 1204-1997,當(dāng)2[8]。并網(wǎng)逆變器作為分布式發(fā)電系統(tǒng)與電網(wǎng)之間的電源接口,通常需要在SCR較大的強(qiáng)電網(wǎng)條件下才能穩(wěn)定高效運(yùn)行[9]。一般可以由SCR的大小來判斷電網(wǎng)的強(qiáng)弱,從而間接判斷出新能源發(fā)電系統(tǒng)滲透率的高低。
圖1 高滲透率新能源并網(wǎng)發(fā)電系統(tǒng)的典型結(jié)構(gòu)示意圖
Fig.1 Typical structure diagram of the high-penetration new energy grid-connected power generation system
2 電流源模式并網(wǎng)逆變器控制策略
2.1 基本原理
并網(wǎng)逆變器主要采用基于鎖相環(huán)(phase-locked loop,PLL)控制的電網(wǎng)電壓定向方案[10-11],該控制方式下并網(wǎng)逆變器可等效為一個(gè)電流源[3,12],稱為電流源模式,如圖2所示。PLL是一種結(jié)構(gòu)簡單,強(qiáng)電網(wǎng)下性能穩(wěn)定的并網(wǎng)同步單元。從圖2可見,電流源模式并網(wǎng)逆變器除了需要PLL外,通常還采用電網(wǎng)電壓前饋,以提升并網(wǎng)逆變器在電網(wǎng)電壓發(fā)生擾動情況下的動態(tài)響應(yīng)性能,并抑制由于電網(wǎng)電壓背景諧波引起的電網(wǎng)電流諧波等問題。
圖2 電流源模式控制示意圖
Fig.2 Schematic diagram of current source mode control
電流源模式是當(dāng)前并網(wǎng)逆變器應(yīng)用于新能源發(fā)電的主要并網(wǎng)模式。強(qiáng)電網(wǎng)下,這種模式不僅能實(shí)現(xiàn)新能源利用率的最大化,還可以保證較高的并網(wǎng)電能質(zhì)量。對于電流源模式并網(wǎng)逆變器而言,高滲透率條件下的電網(wǎng)阻抗大幅波動會導(dǎo)致穩(wěn)定裕度的降低,引起并網(wǎng)逆變器諧波諧振甚至不穩(wěn)定[5,13-16]。有學(xué)者提出了一些改進(jìn)的電流源模式穩(wěn)定控制策略,如調(diào)整PI控制器的參數(shù)或結(jié)構(gòu)[17-18]、在電流環(huán)中加入主動阻尼控制[4,19]等,能夠在一定程度上提高弱電網(wǎng)下電流源模式并網(wǎng)逆變器的穩(wěn)定性。
下面將分別從電網(wǎng)電壓前饋、PLL和dq坐標(biāo)系下的并網(wǎng)控制功率傳輸單調(diào)性三個(gè)方面,闡述弱電網(wǎng)下電流源模式并網(wǎng)逆變器的穩(wěn)定性問題原因及其解決方案。
2.2 電網(wǎng)電壓前饋控制對并網(wǎng)穩(wěn)定性的影響
電網(wǎng)電壓前饋控制可以抵消電網(wǎng)電壓的背景諧波對并網(wǎng)電流的影響,同時(shí)由于其具備抑制并網(wǎng)逆變器啟動時(shí)的沖擊電流,減小并網(wǎng)電流穩(wěn)態(tài)誤差等優(yōu)點(diǎn)而得到廣泛運(yùn)用。弱電網(wǎng)下,電流源模式并網(wǎng)逆變器的電壓前饋環(huán)節(jié)將降低系統(tǒng)穩(wěn)定裕度,導(dǎo)致并網(wǎng)電流出現(xiàn)諧波諧振等問題,惡化電能質(zhì)量。
例如,文獻(xiàn)[20]從并網(wǎng)逆變器諧振阻尼特性出發(fā),分析了數(shù)字控制延時(shí)對諧振頻率的作用,得出弱電網(wǎng)下的電網(wǎng)電壓前饋控制一定程度上影響了系統(tǒng)穩(wěn)定性。文獻(xiàn)[21]對弱電網(wǎng)下電網(wǎng)電壓全前饋策略進(jìn)行了穩(wěn)定性和頻率響應(yīng)分析,根據(jù)電網(wǎng)阻抗引入的額外前饋誤差問題,采用一種微分近似控制器,保證了并網(wǎng)逆變器在采用電網(wǎng)電壓前饋時(shí)的魯棒性和動穩(wěn)態(tài)性能。文獻(xiàn)[22]提出一種結(jié)合比例電網(wǎng)電壓前饋控制和重復(fù)控制的方案,同時(shí)保留了比例控制的快速性與重復(fù)控制的穩(wěn)態(tài)性能,提升了弱電網(wǎng)下的系統(tǒng)魯棒性。
實(shí)際上,采用傳統(tǒng)電壓前饋控制會引入一條與電網(wǎng)阻抗相關(guān)的正反饋通道,從而引起逆變器輸出并網(wǎng)電流出現(xiàn)諧波諧振,甚至逐漸趨向于不穩(wěn)定。為此,有一些文獻(xiàn)從該角度出發(fā),提出在該正反饋通道上設(shè)置不同的傳遞函數(shù)來削弱正反饋的影響,提升并網(wǎng)逆變器穩(wěn)定性。例如:文獻(xiàn)[23-28]中,提出在電網(wǎng)電壓正反饋通道上添加以基頻為中心的二階廣義積分器(second-order generalized integrator, SOGI)。由于采用SOGI補(bǔ)償了并網(wǎng)逆變器的相位裕度,使得系統(tǒng)穩(wěn)定性得到了提高,但對電網(wǎng)電壓低次背景諧波抑制的抑制作用相應(yīng)減弱。進(jìn)一步地,文獻(xiàn)[29]還提出一種基于多個(gè)SOGI疊加的并網(wǎng)點(diǎn)電壓前饋?zhàn)赃m應(yīng)控制,通過自適應(yīng)調(diào)整疊加的SOGI次數(shù)來保證電網(wǎng)電壓低次背景諧波抑制能力。也有文獻(xiàn)考慮在電網(wǎng)電壓前饋中引入加權(quán)比例系數(shù),來弱化前饋引入的正反饋通道,使并網(wǎng)逆變器在具有部分電網(wǎng)電壓前饋優(yōu)點(diǎn)的同時(shí),提升系統(tǒng)穩(wěn)定性[30-31]。文獻(xiàn)[32]對加權(quán)比例系數(shù)方案進(jìn)行了分析,指出該加權(quán)比例系數(shù)在滿足穩(wěn)定性判據(jù)和最小阻尼比的情況下,需要設(shè)置一定的取值范圍,因此該比例系數(shù)在并網(wǎng)逆變器穩(wěn)定性和動態(tài)性能之間需要折中選擇。文獻(xiàn)[33]則通過在電壓前饋通道中串聯(lián)相角補(bǔ)償函數(shù)引入虛擬等效電感,減弱了比例前饋控制的動態(tài)相互作用,提高了并網(wǎng)逆變器對電網(wǎng)阻抗變化的適應(yīng)性。
2.3 PLL控制對并網(wǎng)穩(wěn)定性的影響
弱電網(wǎng)下,作為并網(wǎng)逆變器與大電網(wǎng)保持同步的傳統(tǒng)同步單元,PLL會對并網(wǎng)逆變器的穩(wěn)定性產(chǎn)生負(fù)面影響[34-36]。
目前,已有大量文獻(xiàn)對弱電網(wǎng)下基于PLL同步控制并網(wǎng)逆變器的穩(wěn)定問題進(jìn)行了相關(guān)研究。例如,文獻(xiàn)[16]通過建立非線性PLL模型,指出由于受到弱電網(wǎng)下的電阻阻抗影響,將引起PLL的自同步現(xiàn)象,導(dǎo)致逆變器不穩(wěn)定,然而這種非線性PLL模型不可避免地增加了逆變器電流控制的復(fù)雜性,給實(shí)際分析和應(yīng)用帶來了難度。文獻(xiàn)[37]通過研究弱電網(wǎng)下并網(wǎng)逆變器的同步穩(wěn)定機(jī)理,從影響系統(tǒng)阻尼特性分量的角度,分析了電網(wǎng)阻抗等因素對小擾動下系統(tǒng)同步穩(wěn)定性的影響。文獻(xiàn)[38]研究了基于延時(shí)的PLL在弱電網(wǎng)下導(dǎo)致系統(tǒng)性能惡化的原因,提出添加一個(gè)二階低通濾波器和相位校正環(huán)節(jié)來改進(jìn)系統(tǒng)相位裕度。文獻(xiàn)[39]從并網(wǎng)逆變器輸出阻抗模型的角度分析討論P(yáng)LL的穩(wěn)定性問題,提出了基于電網(wǎng)電流前饋的魯棒型PLL及其相應(yīng)的參數(shù)設(shè)計(jì)方法,保證系統(tǒng)在極弱電網(wǎng)下穩(wěn)定運(yùn)行。文獻(xiàn)[40]提出一種自適應(yīng)阻尼的PLL控制策略,增強(qiáng)了系統(tǒng)魯棒性,提高了并網(wǎng)逆變器對弱電網(wǎng)的適應(yīng)能力。文獻(xiàn)[41]通過構(gòu)建并網(wǎng)逆變器輸出阻抗模型,提出弱電網(wǎng)下PLL引起的輸出阻抗低頻段負(fù)電阻特性將導(dǎo)致系統(tǒng)穩(wěn)定性問題。
實(shí)際上,較高的PLL帶寬將導(dǎo)致弱電網(wǎng)中并網(wǎng)逆變器發(fā)生諧波諧振甚至不穩(wěn)定[42]。文獻(xiàn)[13, 43]指出PLL的帶寬設(shè)置越高,逆變器在低頻段的輸出阻抗的負(fù)阻區(qū)越將越大。因此,為了解決PLL在弱電網(wǎng)下引起的不穩(wěn)定性,降低PLL的帶寬是一種有效的方法[44]?;诖?,文獻(xiàn)[32]提出了一種具有PLL自適應(yīng)帶寬的方案,該方案根據(jù)電網(wǎng)阻抗自適應(yīng)調(diào)節(jié)PLL帶寬,從而改善了并網(wǎng)逆變器在弱電網(wǎng)下的穩(wěn)定性。然而,這類方法將一定程度上降低PLL的動態(tài)性能,當(dāng)系統(tǒng)發(fā)生低電壓穿越等情況時(shí),往往不能滿足并網(wǎng)逆變器的快速性要求。
有文獻(xiàn)提出采用不同PLL的控制結(jié)構(gòu)以解決穩(wěn)定性問題,例如:文獻(xiàn)[45]為PLL增加了一個(gè)帶通濾波器,實(shí)現(xiàn)了并網(wǎng)逆變器輸出阻抗的重塑,抑制了弱電網(wǎng)下的諧振現(xiàn)象。文獻(xiàn)[46]提出了一種魯棒矢量控制策略,該策略考慮了PLL的動態(tài)特性,消除了PLL對并網(wǎng)逆變器穩(wěn)定性的負(fù)面影響。文獻(xiàn)[47]基于復(fù)數(shù)濾波器的基波正序電壓提取特性,提出了具有復(fù)數(shù)濾波器結(jié)構(gòu)的PLL逆變并網(wǎng)系系統(tǒng),增大了并網(wǎng)逆變器輸出阻抗在中頻段內(nèi)的相角裕度。
此外,作為電流源模式并網(wǎng)控制,往往需要同時(shí)考慮電網(wǎng)電壓前饋和PLL對并網(wǎng)逆變器穩(wěn)定性的影響。例如,文獻(xiàn)[48]中構(gòu)建了離散域并網(wǎng)逆變器的小信號模型,提出了并網(wǎng)逆變器的輸出阻抗重塑方案,但該方案僅考慮了PLL,卻沒有考慮電網(wǎng)電壓前饋的影響。雖然該方案能夠削弱低頻帶輸出阻抗的負(fù)電阻特性,從而提高了系統(tǒng)穩(wěn)定性,但是由于未考慮電網(wǎng)電壓前饋控制,缺乏諧波抑制能力,并且電網(wǎng)電壓幅值擾動時(shí)的動態(tài)響應(yīng)速度也會一定程度下降。事實(shí)上,類似于PLL對并網(wǎng)逆變器穩(wěn)定性的影響,過去的研究表明電網(wǎng)電壓前饋同樣也會降低逆變器輸出阻抗的相位[49],因此文獻(xiàn)[50]中采用了基于電流控制回路的相位超前控制策略,可以有效地重塑輸出阻抗的相位并降低了低頻帶的負(fù)阻區(qū)域。進(jìn)一步地,文獻(xiàn)[51]提出了一種同時(shí)考慮PLL和電網(wǎng)電壓前饋環(huán)節(jié)引入的低頻段負(fù)電阻特性的方案,通過在電網(wǎng)電壓前饋通道上添加q軸輸出阻抗重塑的控制器,使并網(wǎng)逆變器能夠在弱電網(wǎng)下穩(wěn)定運(yùn)行,同時(shí)保留了電網(wǎng)電壓前饋控制引入的電網(wǎng)電壓背景諧波抑制性能。
值得一提的是,以上的控制策略均針對弱電網(wǎng)下的PLL小信號穩(wěn)定性,而作為一種經(jīng)典的同步控制結(jié)構(gòu),PLL的輸出特性表達(dá)式是關(guān)于虛擬功角的非線性函數(shù),在大干擾情況下往往會出現(xiàn)虛擬功角失去穩(wěn)定平衡點(diǎn)而發(fā)生同步失穩(wěn)[52-54]。
2.4 dq坐標(biāo)系下的功率傳輸單調(diào)性對并網(wǎng)穩(wěn)定性的影響
文獻(xiàn)[3]研究了電流源模式下基于dq軸電流的功率控制在極弱電網(wǎng)下可能導(dǎo)致的非單調(diào)性問題,如圖3所示。當(dāng)電網(wǎng)阻抗很大時(shí),并網(wǎng)逆變器輸出功率不再具有單調(diào)性,這說明電流源模式并網(wǎng)逆變器不能在極弱電網(wǎng)下穩(wěn)定運(yùn)行。因此,為了保證并網(wǎng)逆變器在極弱電網(wǎng)下的穩(wěn)定運(yùn)行,需要采用不同于電流源模式的并網(wǎng)模式。
圖3 電流源模式并網(wǎng)逆變器有功功率單調(diào)性示意圖
Fig.3 Schematic diagram of monotonicity of active power in current source mode controlled grid-connected inverter
3 電壓源模式并網(wǎng)逆變器控制策略
3.1 基本原理
不同于電流源模式,有文獻(xiàn)提出一種不使用PLL的電壓源并網(wǎng)模式,該模式在弱電網(wǎng)下有較好的穩(wěn)定性[3,12,55]。電壓源模式采用的是組網(wǎng)型同步控制單元,例如采用基于下垂控制或者虛擬同步發(fā)電機(jī)(virtual synchronous generator,VSG)的功率外環(huán)進(jìn)行相位自同步,實(shí)現(xiàn)輸出功率調(diào)節(jié)[56]。電壓源模式并網(wǎng)逆變器直接通過控制輸出電壓矢量相位和幅值實(shí)現(xiàn)輸出功率調(diào)節(jié),其控制特性類似于同步發(fā)電機(jī)系統(tǒng)。
電壓源模式下的并網(wǎng)逆變器常采用基于功率環(huán)與電壓電流雙環(huán)結(jié)合的方案,其控制圖如圖4所示。
圖4 電壓源模式控制示意圖
Fig.4 Schematic diagram of voltage source mode control
近年來,關(guān)于電壓源模式并網(wǎng)逆變器的穩(wěn)定性已有相關(guān)文獻(xiàn)進(jìn)行了研究,例如:文獻(xiàn)[56]提出了一種功率同步控制,使并網(wǎng)逆變器終端實(shí)現(xiàn)了與電網(wǎng)的固有同步,對于連接到極弱交流電網(wǎng)系統(tǒng)的高壓直流環(huán)節(jié),該方法已被證明是一種優(yōu)越的解決方案。文獻(xiàn)[57-58]研究了基于下垂控制的電壓源模式全功率風(fēng)電變流器在弱電網(wǎng)下的直流側(cè)電壓穩(wěn)定控制,然而該方案沒有考慮電網(wǎng)阻抗大幅變化時(shí)的系統(tǒng)穩(wěn)定性,特別是需要分析強(qiáng)電網(wǎng)下電壓源模式并網(wǎng)逆變器的系統(tǒng)穩(wěn)定性。文獻(xiàn)[59-61]從基于序阻抗的小信號建模角度出發(fā),分析了基于VSG控制的電壓源模式并網(wǎng)逆變器在高電網(wǎng)阻抗場景下的穩(wěn)定性,指出相比于傳統(tǒng)電流源模式,電壓源模式在弱電網(wǎng)下更加穩(wěn)定。文獻(xiàn)[62-63]通過構(gòu)建下垂控制三相并網(wǎng)逆變器的序阻抗模型,分析了功率同步環(huán)產(chǎn)生的頻率耦合效應(yīng),得出弱電網(wǎng)下基于電壓源模式的下垂控制具有更好的并網(wǎng)特性。進(jìn)一步地,文獻(xiàn)[64]基于諧波線性化建模方法,得到了基于VSG控制的整體序阻抗模型,獲得了VSG頻率耦合效應(yīng)的原因。文獻(xiàn)[65]通過分析對比電流源模式并網(wǎng)逆變器和電壓源模式并網(wǎng)逆變器發(fā)現(xiàn):前者的序阻抗在中頻段呈負(fù)阻抗特性,后者則在中頻段呈感性,因此電壓源模式對弱電網(wǎng)更具適應(yīng)性。
3.2 dq坐標(biāo)系下的功率傳輸單調(diào)性對并網(wǎng)穩(wěn)定性的影響
當(dāng)并網(wǎng)逆變器運(yùn)行在電壓源模式時(shí),和基于矢量控制的電流源模式不同,其通過控制輸出端電壓E和輸出功角δ來控制輸出功率,控制特性類似于傳統(tǒng)同步發(fā)電機(jī)系統(tǒng)。當(dāng)功角δ增大時(shí),輸出有功功率P并非單調(diào)增加,而是存在先增加后減小的現(xiàn)象。隨著端電壓E的增加,輸出有功功率P也相應(yīng)增加,如圖5所示。值得一提的是,運(yùn)行點(diǎn)功角δ可以反映當(dāng)前運(yùn)行工況下的交流電網(wǎng)強(qiáng)度,可采用短路比λSCR來衡量直流系統(tǒng)接入的交流系統(tǒng)強(qiáng)度[66],其表達(dá)式為
圖5 電壓源模式并網(wǎng)逆變器有功功率單調(diào)性示意圖
Fig.5 Schematic diagram of monotonicity of active power in voltage source mode controlled grid-connected inverter
式中:Pdc表示直流系統(tǒng)的容量;Sac表示電網(wǎng)阻抗Xg對應(yīng)的短路容量;U表示遠(yuǎn)端單機(jī)無窮大電網(wǎng)電壓。
根據(jù)式(1)可知單調(diào)邊界對應(yīng)的功角為π/2。帶入式(1)所示的SCR公式,且通過加入無功功率支撐使得E=U,可得此時(shí)對應(yīng)的SCR為1,根據(jù)實(shí)際物理系統(tǒng)中SCR的定義可知,SCR不會小于1,因此,電壓源模式并網(wǎng)逆變器在更弱的電網(wǎng)下仍能夠穩(wěn)定運(yùn)行[3]。
3.3 功率外環(huán)的控制阻尼特性對并網(wǎng)穩(wěn)定性的影響
文獻(xiàn)[3]研究了電壓源模式并網(wǎng)逆變器在電網(wǎng)阻抗變化時(shí)的功率外環(huán)小信號模型,發(fā)現(xiàn)電網(wǎng)阻抗較大時(shí)并網(wǎng)逆變器功率外環(huán)的極點(diǎn)阻尼較大,系統(tǒng)穩(wěn)定性較好,而在電網(wǎng)阻抗較小時(shí)則阻尼非常小,輸出功率易發(fā)生振蕩。此外,電網(wǎng)阻抗過小時(shí),電壓源控制的并網(wǎng)逆變器對輸出電壓矢量小范圍的調(diào)節(jié)將會給輸出功率帶來大范圍的變化,大大增加了輸出電壓的控制精度和抗擾性能等方面的要求。因此,較高的電網(wǎng)阻抗將有利于提高系統(tǒng)的魯棒性和穩(wěn)定性。
值得一提的是,電壓源模式并網(wǎng)逆變器具有類似于同步發(fā)電機(jī)的同步特性,因此,在大干擾情況下也可能發(fā)生類似同步發(fā)電機(jī)的同步暫態(tài)失穩(wěn)現(xiàn)象??紤]電流飽和限幅環(huán)節(jié)時(shí)還會使失穩(wěn)過程更為復(fù)雜[67],往往需要進(jìn)行控制切換以避免與電網(wǎng)的失步[68-69]。另外,相比電流源模式并網(wǎng)控制,電壓源模式如何實(shí)現(xiàn)光伏、風(fēng)力發(fā)電的最大功率跟蹤(maximum power point tracking,MPPT)以及和儲能系統(tǒng)荷電狀態(tài)、充放電模式和響應(yīng)時(shí)間等動態(tài)響應(yīng)特性之間的相互協(xié)調(diào),保證直流母線電壓和輸出功率的穩(wěn)定控制,這些都是電壓源模式并網(wǎng)控制技術(shù)在實(shí)際應(yīng)用中亟待解決的問題。
4 雙模式并網(wǎng)逆變器控制策略
對比以上介紹的電流源模式和電壓源模式的并網(wǎng)逆變器控制穩(wěn)定性可知,二者的差異性本質(zhì)上是由于采用了不同的控制結(jié)構(gòu)導(dǎo)致的,使得并網(wǎng)逆變器對電網(wǎng)呈現(xiàn)出不同的外特性,從而在電網(wǎng)阻抗強(qiáng)弱變化時(shí),產(chǎn)生了一定的“互補(bǔ)”特性。即電流源模式并網(wǎng)逆變器適用于強(qiáng)電網(wǎng),而弱電網(wǎng)穩(wěn)定性下降,在極弱電網(wǎng)下甚至不能穩(wěn)定運(yùn)行;與之相反,在極弱電網(wǎng)和弱電網(wǎng)下的電壓源模式并網(wǎng)逆變器具有較好的穩(wěn)定性,而在強(qiáng)電網(wǎng)下系統(tǒng)則不穩(wěn)定。因此,文獻(xiàn)[3,70-72]提出了基于電網(wǎng)阻抗自適應(yīng)的雙模式控制,如圖6所示。在強(qiáng)電網(wǎng)下并網(wǎng)逆變器采用電流源模式,極弱電網(wǎng)下則切換到電壓源模式,綜合了兩種并網(wǎng)模式的優(yōu)點(diǎn),有效提升了單臺逆變器的電網(wǎng)阻抗適應(yīng)性,但是卻未涉及雙模式控制擴(kuò)展到多逆變器系統(tǒng)時(shí)的穩(wěn)定性問題。在文獻(xiàn)[3]的基礎(chǔ)上,文獻(xiàn)[12]將雙模式控制應(yīng)用到多逆變器系統(tǒng),提出多逆變器系統(tǒng)由全電流源模式切換到混合模式,使得系統(tǒng)同時(shí)有電流源模式和電壓源模式的并網(wǎng)逆變器,提升了弱電網(wǎng)下的并網(wǎng)逆變器穩(wěn)定性。然而,文獻(xiàn)[12]缺少對全電流源模式和混合模式切換邊界的定量分析,也未考慮電網(wǎng)進(jìn)一步變?nèi)鯐r(shí)混合模式系統(tǒng)是否仍舊穩(wěn)定的問題?;诖?,文獻(xiàn)[73]進(jìn)一步提出了基于電網(wǎng)阻抗自適應(yīng)的雙模式組合控制策略,將多逆變器系統(tǒng)從混合模式切換到全電壓源模式,從而保證了極弱電網(wǎng)下的系統(tǒng)仍舊有足夠的穩(wěn)定裕度。特別地,該文獻(xiàn)基于D分割法[74-76],研究了在幅值裕度、相位裕度和系統(tǒng)帶寬等多性能指標(biāo)約束下的參數(shù)穩(wěn)定域,得出了SCR大幅波動情況下全電流源模式、混合模式和全電壓模式之間的定量切換邊界。
圖6 雙模式控制示意圖
Fig.6 Schematic diagram of dual mode control
5 高滲透率新能源并網(wǎng)逆變控制策略研究展望
現(xiàn)有高滲透率新能源并網(wǎng)技術(shù)的研究工作大多局限于傳統(tǒng)電流源模式的并網(wǎng)穩(wěn)定性控制,電壓源模式乃至雙模式的并網(wǎng)控制技術(shù)仍處于起步階段。隨著科學(xué)技術(shù)的進(jìn)步,高滲透率新能源并網(wǎng)系統(tǒng)將借助于信息處理技術(shù)、大數(shù)據(jù)技術(shù)和人工智能等技術(shù)的支持,實(shí)現(xiàn)以下幾方面的研究方案和策略。
1)適用于多逆變器系統(tǒng)的滲透率在線估計(jì)技術(shù)。針對傳統(tǒng)電網(wǎng)阻抗被動辨識存在時(shí)效性差、精度低,而主動辨識存在對電網(wǎng)擾動大的問題,需要研究基于高精度、低延時(shí)的阻抗準(zhǔn)被動辨識技術(shù);另一方面,選取注入擾動信號合適的頻譜特征和注入時(shí)序,有效提升裝備的辨識技術(shù)對電網(wǎng)的干擾也是未來需要研究的問題。
2)形成更有利于實(shí)際運(yùn)用的電壓源模式并網(wǎng)控制方案。研究計(jì)及MPPT特性和儲能系統(tǒng)荷電狀態(tài)、充放電模式和響應(yīng)時(shí)間等特性的電壓源模式協(xié)調(diào)控制方法,平抑并網(wǎng)功率波動和維持前后級功率平衡的直流穩(wěn)壓技術(shù)。
3)研究基于滲透率指標(biāo)的多逆變器系統(tǒng)混合模式控制技術(shù)。電流源模式和電壓源模式具有穩(wěn)定性上的互補(bǔ)特性,在電網(wǎng)中應(yīng)該如何合理配置兩種不同類型的并網(wǎng)逆變器從而使系統(tǒng)達(dá)到最好的動穩(wěn)態(tài)特性是亟待解決的問題。探究基于滲透率指標(biāo)的電壓源、電流源混合模式控制策略,實(shí)現(xiàn)基于穩(wěn)定裕度和新能源利用率兩個(gè)指標(biāo)綜合最優(yōu)的電壓源模式最小容量配比規(guī)律也都需要進(jìn)一步深入研究。
4)基于人工智能優(yōu)化算法的混合模式多并網(wǎng)變流器系統(tǒng)協(xié)同控制研究。研究基于人工智能算法的混合模式并網(wǎng)變流器系統(tǒng)協(xié)同控制策略,包括了電流源模式和電壓源模式兩種不同控制結(jié)構(gòu)在電網(wǎng)中的落點(diǎn)和網(wǎng)架規(guī)劃的合理設(shè)計(jì),從而減小系統(tǒng)失穩(wěn)風(fēng)險(xiǎn)是未來重要的研究內(nèi)容。
5)高滲透率新能源并網(wǎng)各設(shè)備、平臺間的互聯(lián)互通和數(shù)據(jù)共享等能源互聯(lián)技術(shù)?;?G等數(shù)據(jù)通信技術(shù),集成新能源并網(wǎng)逆變設(shè)備數(shù)據(jù)采集、調(diào)度和協(xié)同等功能于一體,連接發(fā)電端、輸電和用戶,實(shí)現(xiàn)各平臺間的數(shù)據(jù)共享體系。
6 結(jié)語
高滲透率新能源發(fā)電情況下,新能源發(fā)電單元的諧振等穩(wěn)定性問題也日益顯著。在專家學(xué)者的共同努力下,取得了大量理論科研成果,本文重點(diǎn)梳理了并網(wǎng)逆變設(shè)備電流源模式、電壓源模式和雙模式等方面的研究現(xiàn)狀,并探討總結(jié)了未來可能的研究方向和思路。希望本文可以為未來高滲透率新能源并網(wǎng)逆變控制技術(shù)提供有益參考,推動中國新能源并網(wǎng)變流技術(shù)創(chuàng)新和能源可持續(xù)發(fā)展,并滿足中國能源互聯(lián)重大戰(zhàn)略。
參考文獻(xiàn)
[1]WU W M, LIU Y, HE Y B, et al.Damping methods for resonances caused by LCL-filter-based current-controlled grid-tied power inverters: an overview[J].IEEE Transactions on Industrial Electronics, 2017, 64(9): 7402-7413.
[2]CHEN X R, RUAN X B, YANG D S, et al.Injected grid current quality improvement for a voltage-controlled gridconnected inverter[J].IEEE Transactions on Power Electronics,2018, 33(2): 1247-1258.
[3]LI M, ZHANG X, YANG Y, et al.The grid impedance adaptation dual mode control strategy in weak grid[C]//2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia).May 20-24, 2018, Niigata, Japan.IEEE,2018: 2973-2979.
[4]LISERRE M, TEODORESCU R, BLAABJERG F.Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values[J].IEEE Transactions on Power Electronics, 2006, 21(1): 263-272.
[5]ZHOU S Y, ZOU X D, ZHU D H, et al.An improved design of current controller for LCL-type grid-connected converter to reduce negative effect of PLL in weak grid[J].IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018,6(2): 648-663.
[6]CHEN X, ZHANG Y, WANG S S, et al.Impedance-phased dynamic control method for grid-connected inverters in a weak grid[J].IEEE Transactions on Power Electronics, 2017, 32(1):274-283.
[7]YANG D S, RUAN X B, WU H.Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition[J].IEEE Transactions on Power Electronics, 2014, 29(11): 5795-5805.
[8]KRISHAYYA P C S, ADAPA R, HOLM M.IEEE guide for planning DC links terminating at AC locations having low short-circuit capacities, part I: AC/DC system interaction phenomena[J].CIGRE, France, 1997.
[9]IEEE standard for interconnecting distributed resources with electric power systems[J].IEEE Std 1547-2003, 2003: 1-28.
[10]張興.PWM整流器及其控制策略的研究[D].合肥:合肥工業(yè)大學(xué),2003.
[11]KAZMIERKOWSKI M P, MALESANI L.Current control techniques for three-phase voltage-source PWM converters: a survey[J].IEEE Transactions on Industrial Electronics, 1998,45(5): 691-703.
[12]LI M, ZHANG X, ZHAO W.A novel stability improvement strategy for a multi-inverter system in a weak grid utilizing dual-mode control[J].Energies, 2018, 11(8): 2144.
[13]張學(xué)廣,付志超,陳文佳,等.弱電網(wǎng)下考慮鎖相環(huán)影響的并網(wǎng)逆變器改進(jìn)控制方法[J].電力系統(tǒng)自動化, 2018,42(7): 139-145.
ZHANG Xueguang, FU Zhichao, CHEN Wenjia, et al.An improved control method for grid-connected inverters considering impact of phase-locked loop under weak grid condition[J].Automation of Electric Power Systems, 2018,42(7): 139-145(in Chinese).
[14]鄭征,黃旭,楊明,等.弱電網(wǎng)下逆變側(cè)電流反饋的并網(wǎng)逆變器穩(wěn)定性分析及優(yōu)化[J].電力系統(tǒng)保護(hù)與控制,2019,47(19):31-37.
ZHENG Zheng, HUANG Xu, YANG Ming, et al.Stability analysis and improvement for LCL filter grid-connected inverter using inverter-side current feedback[J].Power System Protection and Control, 2019, 47(19):31-37(in Chinese).
[15]SILWAL S, TAGHIZADEH S, KARIMI-GHARTEMANI M,et al.An enhanced control system for single-phase inverters interfaced with weak and distorted grids[J].IEEE Transactions on Power Electronics, 2019, 34(12): 12538-12551.
[16]DONG D, WEN B, BOROYEVICH D, et al.Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions[J].IEEE Transactions on Industrial Electronics,2015, 62(1): 310-321.
[17]MIDTSUND T, SUUL J A, UNDELAND T.Evaluation of current controller performance and stability for voltage source converters connected to a weak grid[C]//The 2nd International Symposium on Power Electronics for Distributed Generation Systems.June 16-18, 2010, Hefei, China.IEEE, 2010: 382-388.
[18]CAO X J, LIU G H, XU W N, et al.Adaptive quasi-PRD control method of grid-connected PV inverter under weak grid[C]//2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia).June 1-5,2015, Seoul, Korea (South).IEEE, 2015: 2469-2474.
[19]YANG Y, FANG G, LU J J, et al.A virtual RC active damping method in weak grid for three-level three-phase grid-connected inverters[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia).May 22-26, 2016, Hefei, China.IEEE, 2016: 741-747.
[20]苗麗芳,王樂媛,曹斌,等.弱電網(wǎng)下電網(wǎng)電壓前饋控制分布式逆變系統(tǒng)的諧振阻尼特性分析[J].高電壓技術(shù),2020,46(10): 3521-3532.
MIAO Lifang, WANG Yueyuan, CAO Bin, et al.Resonance damping characteristic analysis of distributed inverter-based system with grid voltage feed-forward control in weak grid[J].High Voltage Engineering, 2020, 46(10): 3521-3532(in Chinese).
[21]查曉宇,徐軍忠,王勇.弱電網(wǎng)下并網(wǎng)逆變器的改進(jìn)電壓全前饋策略[J].電力電子技術(shù),2020,54(4):84-87.
ZHA Xiaoyu, XU Junzhong, WANG Yong.A modified voltage full-feedforward strategy for grid-connected inverters in weak grid[J].Power Electronics, 2020, 54(4): 84-87(in Chinese).
[22]楊興武,王楠楠,陳磊,等.弱電網(wǎng)下LCL型并網(wǎng)逆變器魯棒重復(fù)控制策略[J].電力電子技術(shù),2018,52(10): 15-18.
YANG Xingwu, WANG Nannan, CHEN Lei, et al.Robust repetitive control approach for grid-connected inverter with LCL filter in weak grid case[J].Power Electronics, 2018,52(10): 15-18(in Chinese).
[23]YANG S D, TONG X Q, YIN J, et al.BPF-based grid voltage feedforward control of grid-connected converters for improving robust stability[J].Journal of Power Electronics, 2017, 17(2):432-441.
[24]TANG Y, HUANG L L, ZHAO G S.Resonant feed forward control for LCL-type grid-tied inverters in weak grid condition[C]//2016 IEEE Energy Conversion Congress and Exposition (ECCE).September 18-22, 2016, Milwaukee, WI,USA.IEEE, 2016: 1-6.
[25]XU J M, QIAN Q, XIE S J, et al.Grid-voltage feedforward based control for grid-connected LCL-filtered inverter with high robustness and low grid current distortion in weak grid[C]//2016 IEEE Applied Power Electronics Conference and Exposition (APEC).March 20-24, 2016, Long Beach, CA,USA.IEEE, 2016: 1919-1925.
[26]楊樹德,同向前,尹軍,等.增強(qiáng)并網(wǎng)逆變器對電網(wǎng)阻抗魯棒穩(wěn)定性的改進(jìn)前饋控制方法[J].電工技術(shù)學(xué)報(bào),2017,32(10): 222-230.
YANG Shude, TONG Xiangqian, YIN Jun, et al.An improved grid voltage feedforward strategy for grid-connected inverter to achieve high robust stability against grid-impedance variation[J].Transactions of China Electrotechnical Society,2017, 32(10): 222-230(in Chinese).
[27]徐飛,湯雨,谷偉.弱電網(wǎng)條件下LCL型并網(wǎng)逆變器諧振前饋控制策略研究[J].中國電機(jī)工程學(xué)報(bào),2016,36(18):4970-4979.
XU Fei, TANG Yu, GU Wei.Resonant feedforward control strategy for LCL-type grid-connected inverters in weak grid condition[J].Proceedings of the CSEE, 2016, 36(18): 4970-4979(in Chinese).
[28]尹有為,井敬,楊樹德,等.增強(qiáng)LCL逆變器對弱電網(wǎng)適應(yīng)能力的前饋控制[J].電氣傳動,2018,48(4): 17-21.
YIN Youwei, JING Jing, YANG Shude, et al.Feedforward control for improving LCL inverter’s adaptability to weak grid[J].Electric Drive, 2018, 48(4): 17-21(in Chinese).
[29]XU J M, XIE S J, QIAN Q, et al.Adaptive feedforward algorithm without grid impedance estimation for inverters to suppress grid current instabilities and harmonics due to grid impedance and grid voltage distortion[J].IEEE Transactions on Industrial Electronics, 2017, 64(9): 7574-7586.
[30]QIAN Q, GE X W, XIE S J, et al.Improved grid voltage feedforward for strengthening the inverter’s adaptability to utility[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia).May 22-26, 2016, Hefei,China.IEEE, 2016: 897-901.
[31]李明,張興,楊瑩, 等.弱電網(wǎng)下基于加權(quán)系數(shù)的電網(wǎng)電壓前饋控制策略[J].電源學(xué)報(bào), 2017,15(6): 10-18.
LI Ming, ZHANG Xing, YANG Ying, et al.Grid voltage feedforward control strategy based on weighting coefficient in weak grid[J].Journal of Power Supply, 2017, 15(6): 10-18(in Chinese).
[32]CESPEDES M, SUN J.Adaptive control of grid-connected inverters based on online grid impedance measurements[J].IEEE Transactions on Sustainable Energy, 2014, 5(2): 516-523.
[33]楊興武,王濤,徐依明,等.基于虛擬電感的LCL型并網(wǎng)逆變器電網(wǎng)電壓前饋控制策略[J].太陽能學(xué)報(bào),2020,41(11):56-63.
YANG Xingwu, WANG Tao, XU Yiming, et al.Voltage feedforward control of lcl grid-connected inverter based on virtual inductor[J].Acta Energiae Solaris Sinica, 2020, 41(11):56-63(in Chinese).
[34]張孟香.弱電網(wǎng)下并網(wǎng)逆變器自同步控制策略研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2020.
[35]孫青青.考慮鎖相環(huán)影響的LCL型并網(wǎng)逆變器穩(wěn)定控制方法[D].合肥:合肥工業(yè)大學(xué),2020.
[36]XU J M, QIAN Q, ZHANG B F, et al.Harmonics and stability analysis of single-phase grid-connected inverters in distributed power generation systems considering phase-locked loop impact[J].IEEE Transactions on Sustainable Energy, 2019,10(3): 1470-1480.
[37]胡祺,付立軍,馬凡,等.弱電網(wǎng)下基于鎖相控制并網(wǎng)變換器小擾動同步穩(wěn)定分析[J].中國電機(jī)工程學(xué)報(bào),2021,41(1):98-108.
HU Qi, FU Lijun, MA Fan, et al.Small signal synchronizing stability analysis of PLL-based VSC connected to weak AC grid[J].Proceedings of the CSEE, 2021, 41(1): 98-108(in Chinese).
[38]許津銘,卞申一陽,錢浩,等.弱電網(wǎng)下單相并網(wǎng)逆變器延時(shí)鎖相環(huán)的魯棒控制及優(yōu)化方法[J].中國電機(jī)工程學(xué)報(bào),2020,40(7):2062-2070.
XU Jinming, BIAN Shenyiyang, QIAN Hao, et al.Robust control and optimization of Delay-based Phase-locked loop of Single-phase Grid-connected inverters under weak grid conditions[J].Proceedings of the CSEE, 2020, 40(7): 2062-2070(in Chinese).
[39]許津銘,卞申一陽,錢強(qiáng),等.弱電網(wǎng)下基于電網(wǎng)電流前饋的單相逆變器鎖相環(huán)[J].中國電機(jī)工程學(xué)報(bào),2020,40(8):2647-2657.
XU Jinming, BIAN Shenyiyang, QIAN Qiang, et al.Grid current feedforward based Phase-locked loop for Single-phaseinverters in weak grid case[J].Proceedings of the CSEE, 2020,40(8): 2647-2657(in Chinese).
[40]張?jiān)骑w,趙晉斌,周鳴倢,等.弱電網(wǎng)下自適應(yīng)同步旋轉(zhuǎn)坐標(biāo)系鎖相環(huán)魯棒性分析及研究[J].中國電機(jī)工程學(xué)報(bào),2020,40(7): 2234-2243.
ZHANG Yunfei, ZHAO Jinbin, ZHOU Mingjie, et al.Robustness analysis and research of adaptive Synchronousreference-frame Phase-locked loop under weak grid[J].Proceedings of the CSEE, 2020, 40(7): 2234-2243(in Chinese).
[41]WEN B, BOROYEVICH D, MATTAVELLI P, et al.Impedance-based analysis of grid-synchronization stability for three-phase paralleled converters[J].2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, 2014:1233-1239.
[42]WANG X F, HARNEFORS L, BLAABJERG F.Unified impedance model of grid-connected voltage-source converters[J].IEEE Transactions on Power Electronics, 2018,33(2): 1775-1787.
[43]ZHANG X G, XIA D N, FU Z C, et al.An improved feedforward control method considering PLL dynamics to improve weak grid stability of grid-connected inverters[J].IEEE Transactions on Industry Applications, 2018, 54(5):5143-5151.
[44]ZHOU J Z, DING H, FAN S T, et al.Impact of short-circuit ratio and phase-locked-loop parameters on the small-signal behavior of a VSC-HVDC converter[J].IEEE Transactions on Power Delivery, 2014, 29(5): 2287-2296.
[45]WU X J, LI X Q, YUAN X B, et al.Grid harmonics suppression scheme for LCL-type grid-connected inverters based on output admittance revision[J].IEEE Transactions on Sustainable Energy,2015, 6(2): 411-421.
[46]DAVARI M, MOHAMED Y A R I.Robust vector control of a very weak-grid-connected voltage-source converter considering the phase-locked loop dynamics[J].IEEE Transactions on Power Electronics, 2017, 32(2): 977-994.
[47]涂春鳴,高家元,李慶,等.具有復(fù)數(shù)濾波器結(jié)構(gòu)鎖相環(huán)的并網(wǎng)逆變器對弱電網(wǎng)的適應(yīng)性研究[J].電工技術(shù)學(xué)報(bào),2020,35(12):2632-2642.
TU Chunming, GAO Jiayuan, LI Qing, et al.Research on adaptability of grid-connected inverter with complex coefficient-filter structure phase locked loop to weak grid[J].Transactions of China Electrotechnical Society, 2020, 35(12):2632-2642(in Chinese).
[48]FANG J Y, LI X Q, LI H C, et al.Stability improvement for three-phase grid-connected converters through impedance reshaping in quadrature-axis[J].IEEE Transactions on Power Electronics, 2018, 33(10): 8365-8375.
[49]WANG J, SONG Y L, MONTI A.A study of feedforward control on stability of grid-parallel inverter with various grid impedance[C]//2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG).June 24-27, 2014, Galway, Ireland.IEEE, 2014: 1-8.
[50]WANG J F, YAO J H, HU H B, et al.Impedance-based stability analysis of single-phase inverter connected to weak grid with voltage feed-forward control[C]//2016 IEEE Applied Power Electronics Conference and Exposition (APEC).March 20-24, 2016, Long Beach, CA, USA.IEEE, 2016: 2182-2186.
[51]LI M, ZHANG X, GUO Z X, et al.The control strategy for the grid-connected inverter through impedance reshaping in q-axis and its stability analysis under a weak grid[J].IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021,9(3): 3229-3242.
[52]WU H, WANG X F.Design-oriented transient stability analysis of PLL-synchronized voltage-source converters[J].IEEE Transactions on Power Electronics, 2019, 35(4): 3573-3589.
[53]YUAN H, XIN H H, HUANG L B, et al.Stability analysis and enhancement of type-4 wind turbines connected to very weak grids under severe voltage sags[J].IEEE Transactions on Energy Conversion, 2019, 34(2): 838-848.
[54]HE X Q, GENG H, LI R Q, et al.Transient stability analysis and enhancement of renewable energy conversion system during LVRT[J].IEEE Transactions on Sustainable Energy,2020, 11(3): 1612-1623.
[55]BOUAFIA A, GAUBERT J P, KRIM F.Predictive direct power control of three-phase pulsewidth modulation (PWM)rectifier using space-vector modulation (SVM)[J].IEEE Transactions on Power Electronics, 2010, 25(1): 228-236.
[56]ZHANG L D, HARNEFORS L, NEE H P.Interconnection of two very weak AC systems by VSC-HVDC links using powersynchronization control[J].IEEE Transactions on Power Systems, 2011, 26(1): 344-355.
[57]YUAN X B, CHAI J Y, LI Y D.Control of variable pitch,variable speed wind turbine in weak grid systems[C]//2010 IEEE Energy Conversion Congress and Exposition.September 12-16, 2010, Atlanta, GA, USA.IEEE, 2010: 3778-3785.
[58]YUAN X B, WANG F, BOROYEVICH D, et al.DC-link voltage control of a full power converter for wind generator operating in weak-grid systems[J].IEEE Transactions on Power Electronics, 2009, 24(9): 2178-2192.
[59]WU W H, ZHOU L M, CHEN Y D, et al.Sequenceimpedance-based stability comparison between VSGs and traditional grid-connected inverters[J].IEEE Transactions on Power Electronics, 2019, 34(1): 46-52.
[60]伍文華.新能源發(fā)電接入弱電網(wǎng)的寬頻帶振蕩機(jī)理及抑制方法研究[D].長沙:湖南大學(xué), 2019.
[61]伍文華,周樂明,陳燕東,等.序阻抗視角下虛擬同步發(fā)電機(jī)與傳統(tǒng)并網(wǎng)逆變器的穩(wěn)定性對比分析[J].中國電機(jī)工程學(xué)報(bào),2019,39(5): 1411-1421.
WU Wenhua, ZHOU Leming, CHEN Yandong, et al.Stability comparison and analysis between the virtual synchronous generator and the traditional grid-connected inverter in the view of sequence impedance[J].Proceedings of the CSEE,2019, 39(5): 1411-1421(in Chinese).
[62]陳杰,閆震宇,趙冰,等.下垂控制三相逆變器阻抗建模與并網(wǎng)特性分析[J].中國電機(jī)工程學(xué)報(bào),2019,39(16):4846-4856.
CHEN Jie, YAN Zhenyu, ZHAO Bing, et al.On the impedance modelling and grid-connected characteristics of the three-phase droop controlled inverter[J].Proceedings of the CSEE, 2019,39(16): 4846-4856(in Chinese).
[63]趙冰.電壓控制型逆變器控制策略及并網(wǎng)特性研究[D].南京:南京航空航天大學(xué),2018.
[64]杜燕,趙韓廣,楊向真,等.考慮頻率耦合效應(yīng)的虛擬同步發(fā)電機(jī)序阻抗建模[J].電源學(xué)報(bào), 2020,18(6): 42-49.
DU Yan, ZHAO Hanguang, YANG Xiangzhen, et al.Sequence impedance modeling of virtual synchronous generator considering frequency coupling effect[J].Journal of Power Supply, 2020, 18(6): 42-49(in Chinese).
[65]衛(wèi)楚奇,石磊,周百靈,等.電壓型與電流型逆變器序阻抗建模與分析[J].電力電子技術(shù),2020,54(10): 107-110.
WEI Chuqi, SHI Lei, ZHOU Bailing, et al.Sequence impedance modeling and analysis of voltage controlled and current controlled inverters[J].Power Electronics, 2020,54(10): 107-110(in Chinese).
[66]黃云輝,周翩,王龍飛.弱電網(wǎng)下基于矢量控制的并網(wǎng)變換器功率控制穩(wěn)定性[J].電力系統(tǒng)自動化,2016,40(14):93-99.
HUANG Yunhui, ZHOU Pian, WANG Longfei.Power control stability in vector control based voltage source converters connected to weak grid[J].Automation of Electric Power Systems, 2016, 40(14): 93-99(in Chinese).
[67]XIN H H, HUANG L B, ZHANG L Q, et al.Synchronous instability mechanism of P-f droop-controlled voltage source converter caused by current saturation[J].IEEE Transactions on Power Systems, 2016, 31(6): 5206-5207.
[68]HUANG L B, XIN H H, WANG Z, et al.Transient stability analysis and control design of droop-controlled voltage source converters considering current limitation[J].IEEE Transactions on Smart Grid, 2019, 10(1): 578-591.
[69]黃林彬,辛煥海,鞠平,等.電力電子并網(wǎng)裝備的同步穩(wěn)定分析與統(tǒng)一同步控制結(jié)構(gòu)[J].電力自動化設(shè)備,2020,40(9):10-25.
HUANG Linbin, XIN Huanhai, JU Ping, et al.Synchronization stability analysis and unified synchronization control structure of grid-connected power electronic devices[J].Electric Power Automation Equipment, 2020, 40(9): 10-25(in Chinese).[知網(wǎng)]
[70]李明.高滲透率新能源發(fā)電并網(wǎng)逆變器阻抗自適應(yīng)雙模式控制研究[D].合肥:合肥工業(yè)大學(xué),2020.
[71]LI M, ZHANG X, GUO Z X, et al.Impedance adaptive dual-mode control of grid-connected inverters with large fluctuation of SCR and its stability analysis based on D-partition method[J].IEEE Transactions on Power Electronics, 2021,36(12): 14420-14435.
[72]李明,張興,郭梓暄,等.弱電網(wǎng)下基于電網(wǎng)阻抗自適應(yīng)的雙模式并網(wǎng)穩(wěn)定控制策略[J].太陽能學(xué)報(bào),2021,42(7):86-93.
LI Ming, ZHANG Xing, GUO Zixuan, et al.Grid impedance adaption dual mode grid-connected stability control strategy in a weak grid[J].Acta Energiae Solaris Sinica, 2021, 42(7): 86-93(in Chinese).
[73]LI M, ZHANG X, GUO Z X, et al.The dual-mode combined control strategy for centralized photovoltaic grid-connected inverters based on double-split transformers[J].IEEE Transactions on Industrial Electronics, 2021, 68(12): 12322-12330.
[74]NEIMARK Y I.D-partition and robust stability[J].Computational Mathematics and Modeling, 1998, 9(2): 160-166.
[75]HWANG C, HWANG L F, HWANG J H.Robust D-partition[J].Journal of the Chinese Institute of Engineers, 2010, 33(6): 811-821.
[76]李明,張興,郭梓暄,等.弱電網(wǎng)下基于D分割法的逆變器PI參數(shù)設(shè)計(jì)及穩(wěn)定域分析[J].電力系統(tǒng)自動化,2020,44(15):139-147.
LI Ming, ZHANG Xing, GUO Zixuan, et al.Proportionalintegral parameter design for inverter based on D-partition method and its stability region analysis in weak grid[J].Automation of Electric Power Systems, 2020, 44(15):139-147(in Chinese).
Review and Perspectives on Control Strategies for Renewable Energy Grid-connected Inverters
ZHANG Xing, LI Ming*, GUO Zixuan, WANG Jilei, HAN Feng, FU Xinxin
(National and Local Joint Engineering Laboratory for Renewable Energy Access to Grid Technology(Hefei University of Technology), Hefei 230009, Anhui Province, China)
Abstract: With the increasing penetration of renewable energy generation systems such as wind power and photovoltaics,the power grid presents a weak grid or even very weak grid characteristics, which brings about serious challenges with regard to the stable and efficient operation of renewable energy grid-connected generation systems.By reviewing the current results of existing typical renewable energy grid-connected inverter stability control strategies and other aspects, the basic principles and research status of current-source mode, voltagesource mode, and dual-mode control are summarized, and the current-source mode based on phase-locked loop control can ensure system stability and power control rapidity under a strong grid, which has many limitations in terms of stability, system voltage, and frequency adjustment, and adapting to a scenario where a high proportion of renewable energy generation units are connected is difficult.Voltage-source mode control based on power self-synchronous control can provide support for voltage and frequency, and it is therefore more suitable for weak grid situations with high penetration of renewable energy generation connected to the grid.The dual-mode control strategy based on grid impedance adaptation takes advantage of both the currentsource mode and voltage source mode in terms of stability,which is more applicable to the scenario of large fluctuations in grid impedance under a high penetration rate.Finally, the above-mentioned typical control strategies are summarized and discussed to determine possible future research directions.
Keywords: high penetration rate; renewable energy grid connection; current-source mode; voltage source mode; dual mode